Evaluation of the Therapeutic Effect of Patching in Intermittent Exotropia

Rimsha Sarosh1*, Omar Rashid2, Parsa Sarosh3

1Consultant, Paediatric Ophthalmology and Strabismus, MBBS, MS, FPOS. Dr Manzoor Eye Care Centre, 28-Wazir Bagh, Srinagar, Jammu and Kashmir, 190008.
2Consultant, Cornea and Refractive Surgery, MBBS, MS, FCRS, Dr Manzoor Eye Care Center, 28, Wazir Bagh, Srinagar, Jammu and Kashmir, India- 190010.
3PhD scholar, B-TECH, MSc Electronics. Department of Electronics and Instrumentation Technology, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, India -190006.

Article Info

Article Notes
Received: June 08, 2020
Accepted: July 23, 2020

*Correspondence:
Dr. Rimsha Sarosh, Consultant, Paediatric and Strabismus, MBBS, MS, FPOS. Dr Manzoor Eye Care Centre, 28- Wazir Bagh , Srinagar, Jammu and Kashmir, India - 190008;
Email: rimsha.sarosh@gmail.com.

©2020 Sarosh R. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License.

Keywords:
Exotropia
Patching
Control
Stereopsis

Abstract

Purpose: To assess the therapeutic significance of patching, in patients of intermittent exotropia in relation to control of deviation, absolute measurements and stereopsis.

Material and Methods: This prospective study was carried out in the Strabismus and Paediatric ophthalmology clinic of a tertiary care hospital. Seventeen patients underwent patching of the dominant eye or alternate occlusion in case of no ocular preference, for a duration of 6 hours / day. Objective Prism cover test measurements, stereopsis evaluation and three point control of deviation scoring were done before and after the 6 months duration. Paired samples t test and Stuart-Maxwell marginal homogeneity test were employed for analysis.

Results: The mean near and distance deviation was 20.35 +/- 4.663 S.D and 21.18+/- 6.885 S.D improving to 13.82 +/- 5.065 S.D and 19.49+/- 5.478 S.D respectively (p<0.001). Angle of strabismus showed a positive trend and decline for near as well as distance measurements with conversion of exotropia subtypes into pseudo divergence excess. Improvement in stereopsis was noted with fine stereopsis of 60 sec seen in 14 patients (82.35%) post patching as against 9 patients (52.94%) before starting the treatment.(p=0.03). Control grading showed a significant improvement with 11 patients (64.70%) attaining a score of 1, whereas before the start of patching the majority i.e 10 patients (58.82%) had a control score of 3.(p=0.004)

Conclusion: Patching induces improvement in degree of control, stereopsis and reduction in angle of deviation.

Exotropia is the misaligned state of the visual axes wherein the eyes have a tendency to drift outwards. Intermittent exotropia, the most common exodeviation affects 1% of the population less than 11 years of age1. Intermittent exodeviation usually begins in the first year of life. Amblyopia is rare, as the patient maintains binocular fusion during straight periods and facultative suppression while deviated2,3. Quite unlike esotropia, stereopsis is preserved until late4. Since intermittent exotropia has been propounded as a progressive condition in literature, it is imperative that treatment be prompt and decisive to prevent conversion to constant deviation5. Unfortunately, no clear consensus occurs here. The assessment of control, which has been defined as the amount of time spent in the deviated state and the promptness of fusion after dissociation guides the clinician in this decision5. Control can be assessed in the office setting or by a combination of parental enquiry related to dissociation frequency and objective office evaluation6,7. Observation is often recommended as a mainstay of treatment, for deviations less than 20 prism dioptres (Pd) with frequent assessments of control and deviation.
As surgical overcorrection with a consecutive esotropia can result in rapid onset of amblyopia and loss of stereoacuity, the preferred practice pattern is to postpone any surgical intervention beyond 4 years of age. Arguably the patient cooperation and reliability of clinical measurements also improves with this approach. Often, however it is observed that parent anxiety and concerns multiply in this period of wait and watch. Observation of the deviation for >50% of waking hours and poor control on cover testing are generally considered to be the indications for surgical intervention.

The purpose of our study was to evaluate the efficacy of patching of the dominant eye or alternate eye occlusion, in case of equal dominance, in altering the natural course of intermittent exotropia.

Methods

This prospective study was conducted in the Strabismus and Paediatric Ophthalmology Clinic of a Tertiary care Hospital. The study design was approved by the institutional ethics committee and informed consent was sought from the parents. Patients with intermittent exotropia and visual acuity of at least 6/9 (20/25), in age group of 4 to 12 years were included in this study. Patients with amblyopia, concurrent ocular pathology, A and V patterns, constant exodeviation, previous ocular surgery, neurological and medical abnormalities were excluded. Large angle deviation (>30PD) were also not included in our study. After ethics approval, 20 patients were enrolled and advised patching. The study was completed by 17 patients.

Basic exodeviation was defined as the near –distance disparity of less than 10 prism dioptres. Convergence insufficiency was diagnosed in patients when near deviation exceeded distance by 10 prism dioptres and pseudo divergence excess was defined as a larger exotropia at distance in comparison to near, which increases to within 10 prism dioptres of distance measurement after 30 minutes of monocular occlusion. Both groups were subjected to Prism cover test measurements both for 6 metre distance and 1/3rd metre, stereopsis (distance Randot stereotest) and exotropia control scoring. Control scoring was done using the intermittent exotropia control scale as described by Mohney et al.

Intermittent Exotropia Control Scale

| 5 = Constant exotropia |
| 4 = Exotropia > 50% of the exam before dissociation |
| 3 = Exotropia < 50% of the exam before dissociation |
| 2 = No exotropia unless dissociated, recovers in > 5 seconds |
| 1 = No exotropia unless dissociated, recovers in 1–5 seconds |
| 0 = No exotropia unless dissociated, recovers in < 1 second (phoria) |

The test protocol was stereopsis evaluation followed by control assessment. We assessed the control of deviation, both for near and distance. Next, the Prism cover test was done and control assessment was performed again. At the conclusion of the examination a third control assessment was done. The mean of the triple control scores (averaged for near as well as distance) was taken for analysis. The patients were advised patching of the dominant eye or alternate occlusion in case of no fixation preference for 6 hours per day for a period of 6 months. Paired samples t test and Stuart-Maxwell marginal homogeneity test were employed for analysis.

Results

The mean age of our study cohort was 8.21+/- 2.123. Out of the seventeen patients 8 were males (47.1%) and 9 were females (52.9%). At the outset, the mean near and distance deviation was 20.35 +/- 4.663 and 21.18+/- 6.885. After patching there was a statistically significant decrease in the near(p<0.001) as compared to the distance deviations(p=0.008)

<table>
<thead>
<tr>
<th>DEVIATION IN PRISM DIOPTRES (PD)</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEAR Pre PATCHING</td>
<td>20.35</td>
<td>4.663</td>
<td><0.001</td>
</tr>
<tr>
<td>NEAR Post PATCHING</td>
<td>13.82</td>
<td>5.065</td>
<td></td>
</tr>
<tr>
<td>DISTANCE Pre-PATCHING</td>
<td>21.18</td>
<td>6.885</td>
<td>0.008</td>
</tr>
<tr>
<td>DISTANCE Post-PATCHING</td>
<td>19.59</td>
<td>5.478</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EXOTROPIA SUBTYPE PRE PATCHING</th>
<th>BASIC</th>
<th>PSEUDO DIVERGENCE EXCESS</th>
<th>CONVERGENCE INSUFFICIENCY</th>
<th>Prob>Chisq (E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXOTROPIA SUBTYPE POST PATCHING</td>
<td>9</td>
<td>7</td>
<td>1</td>
<td>0.0821</td>
</tr>
</tbody>
</table>

£ Asymptotic test, Stuart Maxwell test
Discussion

The management of intermittent exotropia is complex. The severity and duration of fusion disruptive exo deviated state, usually influences the clinician regarding treatment decisions. The natural history of intermittent exotropia is not clearly defined and it is mostly considered to be a progressive disorder. As per Von Noorden, over a follow up duration of 3.5 years, 75% of 51 untreated patients deteriorated while 16 % showed improvement and 9% exhibited no change10.

Mostly small angles (<20 pd are observed with orthoptic interventions, with the aim of delaying or altogether avoiding a surgical intervention. In our study, we included patients with exodeviations of upto 30 PD, in an attempt to assess the therapeutic benefit of patching in this grey area. Our results show a decrease in total deviation both for near as well as distance after patching for 6 months. These results are in concordance with those of Suh et al, who also reported a statistically significant reduction in angle, more so for near (p <0.001) than for distance (p =0.005)11.

Recent years have seen a lot of research oriented at evaluation of orthoptic interventions in the management of intermittent exotropia. Asadi et al evaluated the effect of a cocktail of orthoptic interventions including prism exercises, pencil push-ups, 3D tests and dominant eye occlusion on intermittent exotropia in 74 patients and reported a success rate of 88.3% of patients in basic type, all patients in Convergence insufficiency type and 88.8% in Divergence excess group12.

Our study group showed significant improvement in stereopsis. Fine stereopsis of 60 sec of arc was seen in 14 of our patients (82.35%) post-patching as against 9 patients (52.94%) before the commencement of the intervention. Alkhamous et al demonstrated a success rate of 94% in stereopsis grade improvement with 17 cases out of eighteen improving to normal stereoacuity after a 50% of waking hours occlusion for 4 months. Their results of control grade improvement were also promising, however they could not demonstrate statistically significant decline.
in angle of strabismus. This was probably because they defined success as a reduction in deviation angle by 50%15. Shin et al showed that patients with good compliance to part time occlusion showed better stereopsis than the ones in the poor compliance group16.

Chia et al, in their retrospective review of 287 patients of intermittent exotropia found that near control remained the same in 65% and worsened in 22% patients over a 5 year follow up17. As evident by our results, control of deviation scoring improves greatly with patching, especially for near (p=0.0015). The control grade of 1 was not seen pre-patching in any of our patients, however eleven of them (64.70%) attained this grade of control at the end. Freeman and Isenberg found that patching converted all patients to hetero or orthophoria, at least temporarily18. The results of Bang et al delineate a practical benefit of patching in influencing surgical results since success rate was 77.7% in the group which showed improved control with patching as against 50% in the non responsive group13.

Figuera and Hing also concluded that preoperative occlusion improved the surgical correction per millimeter of horizontal muscle recession19.

The limitations of our study was the short follow up duration and the lack of a comparison or control group. The effect of the age of the subject as well as the angle of strabismus on the therapeutic effect of patching was not statistically analysed. In theory it is difficult to judge the level of compliance, and this might present as a confounding factor, especially while assessing the success or failure of the intervention.

Patching of the dominant eye or alternate occlusion, in case of no fixation preference seems to promote the induction of tenacous proximal fusion in the patients. This is evident by the type conversion seen in our study. Stimulation of tenacous proximal fusion may be postulated to be the reason for the stimulation of better control and overall improvement in the tendency to exodeviate. This is a worthwhile option, with a low risk benefit ratio and we hope that our endeavor to evaluate the therapeutic effect of patching in intermittent exotropia has contributed evidence in favour of patching as a modality of treatment.

Disclosures

The authors declare that there is no conflict of interest.

References